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Cluster size and shape in random and correlated percolation 

A Coniglio: and L Russo$ 
Istituto di Fisica Teorica dell’Universita di Napoli, Mostra d’oltremore, Pad. 19, 
8015 Napoli, Italy. 
$ Istituto di Matematica dell’universita di Modena 

Received 2 August 1978 

Abstract. A rigorous inequality between the pair correlation function and connectivity 
functions is proved for Ising model (correlated percolation). This relation shows that large 
correlations imply large connectivity. Such inequality becomes equality in the random 
percolation problem (infinite temperature). Other relations among susceptibility cluster 
size and perimeter are also derived which give information on the shape of the cluster for the 
random and correlated percolation problems. 

1. Introduction 

The percolation problem in a correlated system such as an Ising model has double 
interest: it generalises the percolation problem to more realistic systems, and allows a 
better understanding of the mechanisms of phase transitions. An exact solution of the 
correlated percolation problem for the Bethe lattice has been given by Coniglio (1975, 
1976). Rigorous relations have been derived between “thermal” properties and 
‘connectivity’ properties of the Ising model (Coniglio et a1 1976, 1977). One of the 
most interesting consequences was that the critical point is also a percolation point in 
the two-dimensional Ising model. Rigorous cluster inequalities have been derived by 
Lebowitz and Penrose (1977). Numerical studies have been carried out by employing 
Monte Carlo techniques (Muller Krumbhaar 1974) or series expansion (Sykes and 
Gaunt 1976). The two-dimensional one-spin flip Ising model has been used to provide 
statistical data on Ising clusters (Domb e? a1 1975, Domb and Stoll 1977, Stoll and 
Domb 1978). In this paper we consider an Ising model and derive a simple relation 
between the spin-spin pair correlation function, the pair connectedness function plj (the 
probability that i and j belong to the same cluster) and t l j  (the probability that i belongs 
to a cluster and j to its perimeter). This relation shows that strong correlation has a large 
influence on the connectivity properties, namely one can show that divergence of the 
correlation length implies divergence of the connectedness length (linear dimension of a 
cluster). In 8 3 we shall derive a relation between susceptibility, mean cluster size and 
mean cluster perimeter below and above the percolation threshold. A comparison with 
the recent Monte Carlo calculations of Stoll and Domb (1978) is performed, and the 
agreement with our theory is excellent. We shall consider the correlated case distinctly 
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from the random case (temperature T = CO) in which case all the inequalities that we 
derive become equalities, Preliminary results of this work have been presented at the 
IUPAP conference, Haifa 1977. 

2. Correlations and connectivity properties 

Consider a d-dimensional Ising model. Using the lattice gas terminology we shall 
associate a particle with a ‘down’ spin. Define a cluster as a maximal set of particles 
(‘down’ spins) connected by nearest neighbour bonds. The perimeter of a cluster is the 
set of empty sites (‘up’ spins) which are nearest neighbours to the particles belonging to 
that cluster. Let us introduce the following definitions: 

p = (r l )  is the density of particles, where r l  is the lattice gas variable which is 1 or 0 
depending on whether or not site i is occupied. The brackets stand for the usual thermal 
average with the Ising Hamiltonian. 

g,, = (rlrI) - (rTT,)(rj) is the density-density pair correlation function. 
p l i [ p : ]  is the pair connectedness function (Essam 1973) which is the probability that 

t l j [ t y ]  is the probability that i belongs to a finite [CO] cluster and j to its perimeter. 
Of course these quantities can be expressed as thermal averages of characteristic 

functions. For example pir = (yli) where ylr = 1 if i and j belong to the same finite cluster 
and yli = 0 otherwise. We shall prove the following: 

two sites i and j belong to the same finite [CO] cluster. 

Theorem : For any d-dimensional ferromagnetic Ising model with nearest neighbour 
ferromagnetic interaction at any temperature T and external magnetic field H we have 

For T = CO (random case) relation (1) holds as an equality, namely 

where ~ 5 , ~  is the usual Kronecker symbol which is 1 if i = j and zero otherwise, 

consequences of (1) and (2) are derived. 
Those not interested in the details of the proof should go directly to § 3 where some 

Proof: Consider a box A with fixed boundary conditions. All the quantities defined 
before will now be labelled with a suffix A. The follcwing identity holds: 

( ~ i r , ) ~  =pII, , i+E ( A ~ ~ I ) A  (3) 
A 

pt,,* is the pair connectedness defined in the box A which in the limits of infinite A gives 

lim pI,.,i = pij + P:.  
‘I-bao 

The sum is over all the clusters A :  

1 if i e A  a n d j E A U a A  ’ = { 0 otherwise 
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given two sites i and j we also have 

which expresses the fact that given a particle at site i ( ( ~ , ) , \ )  any site j can belong to the 
same cluster as i (p!, ,  \) or to its perimeter (fL,, ,) or neither of the two ( C A  ( A t )  d. 

From (3) and (5) we have 

g,,, \ = (TIT,) \ - (Tr) ,(Ti) \ 

= (1 -P)P, , ,  -Ptl,, + C ((A \ -  ( A  f ) \ ( T I )  d. 
A 

The last sum in (6) is zero for T = CO (no correlation). 
Taking into account that 

lim r,,, , = t,, + t: 
h + W  

(7) 

from (4) and (6) in the limit A +  CO we recover the second part (2) of the theorem. To 
prove the first part of the theorem we need to prove that the last sum in (6) is less than or 
equal to zero. In fact we can write for any cluster A :  i E A ,  j &  AU aA 

(8) A A  irA A , ,  = T  (1-T) 

where 

where the last identity is based on equation (8) and the Markovian property of the Ising 
model (for more details see Coniglio eta1 1977). Using the FKG inequalities (Fortuin et 
a1 1971) 

((1 - T ) a A T , ) \ s ( ( l  -T)aA)\(T,) , .  (10) 

From (9) and (10) it follows that 

( A t ~ / ) , \ - ( A t ) , \ ( ~ j ) , , s o .  

From (6 )  and (1 1) in the limit A --f CO the first part of our theorem (1) follows. 

3. Cluster size and shape 

In this section we wish to derive some consequences of our theorem. An immediate 
consequence of (1) is that the correlation length is always less than or equal to the 
connectedness length which represents the linear dimension of a cluster. This means 
that if the correlation length is infinite, the connectedness length is also infinite, which 
shows that regions which are highly correlated are also highly connected. The converse 
is not true. 
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Other inequalities relating spontaneous magnetisation and percolation probability 
have been derived elsewhere (Coniglio et al 1976, 1977). We want to derive a relation 
between cluster perimeter size and susceptibility. Let us consider first the case in which 
we are below the percolation threshold p < pc .  In this case (1) and (2) holds with 
p :  = t: = 0. If we sum (1) and (2) over i we obtain 

( 1 - p ) f i - p S ~ x I p ,  VT (12) 

( l - p ) i i - p S =  1 - p  T=CO (13) 

where 

f i  = p - l  1 p i ,  is the mean cluster size (Essam 1973) 

s = p - '  1 t,, 

x = c gl, 

is the mean cluster perimeter 

is the susceptibility. 

/ 

I 

Equation (13) has been derived independently by Leath (1976). For the two-dimen- 
sional Ising model (12) gives very interesting results. In fact it has been proved by 
Coniglio et a1 (1976) that for such a model, for H = 0, T 3 Tc there are no infinite 
clusters ( p  <ec). Therefore we can apply (12). Consequently at TC the mean cluster 
size diverges faster than or equal to the susceptibility. This implies that the critical point 
is also a percolation point (see also Coniglio 1975, Coniglio et a1 1977). Another 
interesting result of (12) and (13) is that if one considers the left hand side of (12) as an 
index of the compactness of the clusters, then one can deduce that the compactness of 
clusters increases from random (13) to correlated percolation (12). This result is in 
agreement with the Monte Carlo calculations of Domb and Stoll(l977) where the index 
of compactness was defined in a different way. 

Let us now consider the case p >ec. If we sum (1) and (2) over j we will find 
divergences due to the infinite cluster. In order to avoid such difficulties we consider an 
ideal box A whose origin if j and sum over i E A. (We point out that here we are not 
considering a finite system as we have done in 0 2. We consider an infinite system and 
sum (1) and (2) over a finite region A of the space.) From (12) and (13) we then obtain: 

-e)fi\+e=(l -e)fiY -wffh-ee-s? 3 x i 7  QT (14) 

edl - e ) i i , + p - ( l  -e)fiT -eefSt-eemS = (1 - p ) p ,  T = a  (15) 

where p f [ p = ]  is the density of particles included in finite [CO] clusters 

CD 
- _ _  
s , = s n I \ = p j '  1 t d , ;  S ? = s  n A = p G '  t y  

IC . \  I t  2 

ii? diverges in the limit A +  00. In the case T = CO, d = 2, it can be proved (Russo 1978) 
that ii and S are finite for p f pc. We suppose that this is true for any d and T. If then we 
divide (14) and (15) by fi? in the limit A + C O  we obtain 
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(17) 

where 

s" s: -_  --cc - lim +. 
n .+-a n ,, 

Recently Stoll and Domb (1978) by means of Monte Carlo calculations have found 
that both (16) and (17) are well verified except from a few discrepancies of (17) near pc. 
The reason for such discrepancies is due to the fact that their result is valid only for 
finite systems while (17) is valid only for infinite systems. In fact since near pc the size of 
the finite clusters becomes relevant their contribution (17) cannot be neglected 
compared to the size of the spanning cluster. We will show later how to take them into 
account (20). Relation (17) has also been derived independently by Kunz and Souillard 
(1978), Stauffer (1978) and Hankey (1978). We want to show for the random case how 
to relate the contribution of the finite clusters in (15) to dp,/dp. Let us consider the 
following relation: 

where M ( n ,  s)  is the number of distinct cluster of n sites and perimeters which contain 
the origin. If we take the derivative of (18) with respect to p we have 

for p <pc dpf/dp = 1 and (19) gives equation (13). In fact this is the way it was obtained 
by Leath (1976). For p > p c  

which near pc behaves as lp -p~I'p-' where p, is the critical index of the percolation 
probability. From (15) and (19) we have 

Since dp,/dp 2 0, for very large but finite A near p c  we have 
- 
s': 1-p  

n? p 
=>- 

in agreement with the Monte Carlo data of Stoll and Domb (1978). 
In conclusion one of the main goals of this paper was to characterise the pair 

correlation function in terms of geometrical properties. In this sense it could be very 
interesting either to improve the inequality or to find a non-trivial lower bound for the 
pair correlation function in terms of 'connectivity' functions. Relations between mean 
cluster size, mean cluster perimeter and susceptibility have been derived from the basic 
relations (1) and ( 2 ) .  Such relations are equalities in the random case (7' = 03) but 
inequalities in the correlated case (T  # CO). It would be interesting to obtain equalities 
also for the correlated case at least near T = 00 by means of series expansion. 
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